Use the Tab and Up, Down arrow keys to select menu items.
A cutting-edge introduction to modern astrophysics for those potentially interested in further study, building your expertise in how to apply the tools of physics and mathematics to astronomical situations. We start by explaining how stars shine, and follow their evolution from birth to violent death. We explore the physics of our planetary system and strange new worlds around other stars. We then move out into the cosmos, viewing our own Galaxy across the electromagnetic spectrum: revealing the evidence for dark matter and supermassive black holes. Finally, we use our telescopes as time machines to look out and back in the Universe, studying other galaxy systems, and the origin and fate of the whole Universe. This course requires some mathematical skills; please contact the course organiser for details.
The topics covered in this course are:SUN AND STARS How can we study the stars? – characteristics of electromagnetic radiation and matter. The Sun and how it shines. How do we measure distances to stars?; Hertzsprung-Russell diagram; internal stellar structure; stellar evolution; protostar to stellar death – white dwarfs, planetary nebulae, supernovae, neutron stars and black holes.PLANETS and EXOPLANETSHow do we think planets form, and how do we explain the origin of our own solar system? Ways of finding planets around other stars and the search for life on other worldsTHE MILKY WAY How do we observe the Galaxy, effects of cosmic dust, the interstellar medium. Galactic rotation and evidence for Dark Matter. Spiral structure. The centre of the Galaxy and supermassive black hole.GALAXIES AND COSMOLOGY Galaxies beyond the Milky Way; Hubble’s law and expansion of the Universe; Large-scale structure of the Universe; Active galaxies and quasars; Cosmology – Big Bang & beyond; Dark Energy.
The goals of this course are to:a) provide foundation knowledge of Astrophysics for students advancing in an astronomy or physics BSc or BSc(Hons) degree. b) illustrate key concepts in physics using the medium of astronomy where the Universe becomes our laboratory for studying physics at the largest scales and the extremes of density and temperature.Students will obtain basic competency in analysing and solving astrophysical problems. They will also obtain basic astrophysics data analysis skills using software designed to simulate astronomical observations.Students will have developed and be able to demonstrate :basic scientific competency to solve mathematical problems in basic astrophysics.basic astrophysics data analysis skills written communication skills.
Students must attend one activity from each section.
Karen Pollard
Michael Albrow and Michele Bannister
Green, S. F. , Jones, Mark H; An introduction to the sun and stars ; Second edition, revised; Cambridge University Press, 2015.
Jones, Mark H. , Lambourne, Robert J., Serjeant, Stephen; An introduction to galaxies and cosmology ; New edition ; Cambridge University Press, 2015.
Numerous other astronomy texts suitable for supplementary reading are available in the Engineering and Sciences Library.
Course information and content (PDF 253KB)
100-level physics and astronomy course information
General Course Information (PDF 163KB)
Domestic fee $978.00
International fee $4,988.00
* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.
For further information see School of Physical & Chemical Sciences .