COSC441-24S2 (C) Semester Two 2024

Wireless Networking Systems and Performance

15 points

Details:
Start Date: Monday, 15 July 2024
End Date: Sunday, 10 November 2024
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 28 July 2024
  • Without academic penalty (including no fee refund): Sunday, 29 September 2024

Description

This course provides an introduction to wireless networking, covering the different classes of wireless systems, fundamentals of wireless communications and wireless physical layers, medium access control protocols and routing protocols. Furthermore, students will gain hands-on experience with discrete-event simulation, a key methodology for performance assessment of wireless networking protocols and systems.

The course provides an introduction to wireless networking. After surveying the different types of wireless networks (cellular networks and the various types of infrastructure-less or ad-hoc networks), some fundamentals of wireless communications are discussed, including wave propagation phenomena, modulation and coding and the physical layer of the WiFi standard.
The second half of the course will provide a detailed study of medium access control and multi-hop routing protocols.

In addition, the course also familiarizes students with the methodology and with contemporary tools for discrete-event simulation. In particular, students will engage with the OMNet++ simulation framework, they will design a wireless medium access control protocol, implement this in a simulation and conduct a performance analysis following a well-established simulation methodology.

Learning Outcomes

1. Analyse the fundamentals of wireless channels and wireless communications, and their impact in the design of protocols for wireless networks, including in recent wireless technologies [WA1]
2. Critically evaluate and design wireless medium access control protocols [WA1, WA3, WA9, WA10]
3. Critically evaluate routing protocols for wireless ad-hoc networks [WA1]
4. Apply methods and tools for discrete-event simulation [WA1, WA5]
5. Conduct a complex simulation-based performance analysis using proper statistical methodology, and communicate its results [WA1, WA2, WA3, WA4, WA5, WA9, WA10]

University Graduate Attributes

This course will provide students with an opportunity to develop the Graduate Attributes specified below:

Employable, innovative and enterprising

Students will develop key skills and attributes sought by employers that can be used in a range of applications.

Prerequisites

Restrictions

Timetable 2024

Students must attend one activity from each section.

Lecture A
Activity Day Time Location Weeks
01 Wednesday 16:00 - 18:00 Jack Erskine 239
15 Jul - 25 Aug
9 Sep - 20 Oct
Tutorial A
Activity Day Time Location Weeks
01 Tuesday 16:00 - 18:00 Karl Popper 508
15 Jul - 25 Aug
9 Sep - 20 Oct

Examinations, Quizzes and Formal Tests

Test A
Activity Day Time Location Weeks
01 Tuesday 19:00 - 20:30 Psychology - Sociology 252 Lecture Theatre
9 Sep - 15 Sep

Timetable Note

Please note that the course activity times advertised here are currently in draft form, to be finalised at the end of January for S1 and whole year courses, and at the end of June for S2 courses.

Please hold off enquiries about these times until those finalisation dates.

Course Coordinator

Andreas Willig

Assessment

Covid-19 Update: Please refer to the course page on AKO | Learn for all information about your course, including lectures, labs, tutorials and assessments.

• A mid-term test, worth 25% of final marks, 90 minutes, pen-and-paper based
• A final exam, worth 25% of the final marks, 120 minutes, pen-and-paper-based
• One assignment on the physical layer, worth 20%
• One assignment on the MAC layer, worth 30%

Additional Course Outline Information

Grade moderation

The Computer Science department's grading policy states that in order to pass a course you must meet two requirements:
1. You must achieve an average grade of at least 50% over all assessment items.
2. You must achieve an average mark of at least 45% on invigilated assessment items.

If you satisfy both these criteria, your grade will be determined by the following University-wide scale for converting marks to grades: an average mark of 50% is sufficient for a C- grade, an average mark of 55% earns a C grade, 60% earns a C+ grade and so forth. However if you do not satisfy both the passing criteria you will be given either a D or E grade depending on marks. Marks are sometimes scaled to achieve consistency between courses from year to year.

Students may apply for special consideration if their performance in an assessment is affected by extenuating circumstances beyond their control.

Applications for special consideration should be submitted via the Examinations Office website within five days of the assessment.

Where an extension may be granted for an assessment, this will be decided by direct application to the Department and an application to the Examinations Office may not be required.

Special consideration is not available for items worth less than 10% of the course.

Students prevented by extenuating circumstances from completing the course after the final date for withdrawing, may apply for special consideration for late discontinuation of the course. Applications must be submitted to the Examinations Office within five days of the end of the main examination period for the semester.

Special Consideration Applications for the Final Exam

Please click HERE for the CSSE Department's policy for the academic remedy of applications for a special consideration for final exams.

Indicative Fees

Domestic fee $1,110.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see Computer Science and Software Engineering .

All COSC441 Occurrences

  • COSC441-24S2 (C) Semester Two 2024