EMTH119-24S2 (C) Semester Two 2024

Engineering Mathematics 1B

15 points

Details:
Start Date: Monday, 15 July 2024
End Date: Sunday, 10 November 2024
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 28 July 2024
  • Without academic penalty (including no fee refund): Sunday, 29 September 2024

Description

A continuation of EMTH118. Topics covered include methods and Engineering applications of calculus, differential equations, and linear algebra, along with an introduction to probability. This course is a prerequisite for many courses in engineering mathematics and other subjects at 200 level.

EMTH119 consolidates concepts from EMTH118 and introduces more advanced ideas in calculus and linear algebra. It includes applications of this mathematics to applied and engineering problems.
It also incorporates some study of probability. It is a prerequisite for many courses in engineering mathematics and other subjects at the  200-level.

Topics:
First-order ordinary differential equations with applications. Review of complex numbers. Second-order ordinary differential equations with applications.
Introduction to convergence of sequences and series. Applications of differentiation to approximation. Approximation by Taylor polynomials. Landau’s notation and order of magnitude.
Determinants, eigenvalues and eigenvectors.
Probability. Sets and probability. Discrete random variables. Continuous random variables. Expectation, mean, and variance.
Techniques and applications of integration. Integration of rational functions. Arc length. Improper integrals.
Multivariate differentiation and classification of critical points.

Learning Outcomes

  • Students who have succeeded in this course will be able to
  • use calculus, algebra or probability to
      - solve first and second order differential equations
      - find Taylor approximations to functions
      - calculate determinants, eigenvalues and eigenvectors
      - calculate mean and variance of random variables and solve probability problems arising in engineering applications  
      -  evaluate integrals arising in mathematics and engineering
      - investigate the geometry of multivariable functions and classify critical points
  • demonstrate understanding of the mathematical topics in the course by
      - giving definitions of fundamental concepts
      - competent manipulation of functions, matrices, and random variables
      - choosing effective solution techniques for given problems
      - verifying correctness of mathematical calculations
  • describe and interpret the meaning of mathematical solutions to engineering problems (particularly differential equations and random variables)
  • synthesise material from different sections of course (for example, using integration techniques and limit evaluation to solve differential equation or probability problems)

Prerequisites

Restrictions

MATH103, MATH109, MATH199

Timetable 2024

Students must attend one activity from each section.

Lecture A
Activity Day Time Location Weeks
01 Monday 11:00 - 12:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
02 Monday 16:00 - 17:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
Lecture B
Activity Day Time Location Weeks
01 Tuesday 11:00 - 12:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
02 Tuesday 16:00 - 17:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
Lecture C
Activity Day Time Location Weeks
01 Wednesday 11:00 - 12:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
02 Wednesday 16:00 - 17:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
Lecture D
Activity Day Time Location Weeks
01 Thursday 11:00 - 12:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
02 Thursday 16:00 - 17:00 C1 Lecture Theatre
15 Jul - 25 Aug
9 Sep - 20 Oct
Tutorial A
Activity Day Time Location Weeks
01 Monday 15:00 - 16:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
02 Monday 13:00 - 14:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
03 Wednesday 16:00 - 17:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
04 Monday 11:00 - 12:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
05 Monday 08:00 - 09:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
06 Wednesday 08:00 - 09:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
07 Wednesday 10:00 - 11:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
08 Tuesday 14:00 - 15:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
09 Tuesday 11:00 - 12:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
10 Monday 14:00 - 15:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
11 Monday 12:00 - 13:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
12 Monday 16:00 - 17:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
13 Wednesday 09:00 - 10:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
14 Tuesday 08:00 - 09:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
15 Tuesday 15:00 - 16:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
16 Monday 10:00 - 11:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
17 Monday 12:00 - 13:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
18 Wednesday 09:00 - 10:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
19 Wednesday 11:00 - 12:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
20 Wednesday 12:00 - 13:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
21 Tuesday 12:00 - 13:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
22 Wednesday 08:00 - 09:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
23 Wednesday 15:00 - 16:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
24 Tuesday 13:00 - 14:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
25 Monday 13:00 - 14:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
26 Monday 09:00 - 10:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
27 Monday 08:00 - 09:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
28 Tuesday 12:00 - 13:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
29 Wednesday 14:00 - 15:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
30 Tuesday 16:00 - 17:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
31 Wednesday 13:00 - 14:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
32 Tuesday 09:00 - 10:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
33 Monday 09:00 - 10:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
34 Tuesday 09:00 - 10:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
35 Wednesday 15:00 - 16:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
36 Monday 14:00 - 15:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
37 Tuesday 13:00 - 14:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
38 Tuesday 15:00 - 16:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
39 Wednesday 14:00 - 15:00 Jack Erskine 038 Lab 4
15 Jul - 25 Aug
9 Sep - 20 Oct
40 Tuesday 10:00 - 11:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
41 Monday 15:00 - 16:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
42 Monday 10:00 - 11:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
43 Tuesday 08:00 - 09:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct
44 Wednesday 10:00 - 11:00 Jack Erskine 033 Lab 1
15 Jul - 25 Aug
9 Sep - 20 Oct

Course Coordinator

Rua Murray

Lecturers

Jenny Harlow , Phillipa Gourdie and Michael Langton

Textbooks / Resources

Recommended Reading

Stewart, James; Calculus : early transcendentals ; Eighth edition; Cengage Learning, 2016.

Indicative Fees

Domestic fee $1,059.00

International fee $6,000.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see Mathematics and Statistics .

All EMTH119 Occurrences