MATH425-25S2 (C) Semester Two 2025

Real and Complex Analysis

15 points

Details:
Start Date: Monday, 14 July 2025
End Date: Sunday, 9 November 2025
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 27 July 2025
  • Without academic penalty (including no fee refund): Sunday, 28 September 2025

Description

Real and Complex Analysis

The purpose of this course is to learn some foundational results in real and complex analysis.  It provides a thorough grounding in parts of modern mathematics that arise from the study of sequences and series of functions, such as:  pointwise convergence and uniform convergence, how uniform convergence determines whether the limiting function is continuous and whether a series of functions can be termwise differentiated and integrated, and the precise conditions for a sequence of functions to have a subsequence of functions that converges uniformly on compact sets. In addition, with time permitting, a selection of topics in complex analysis may be covered, such as:  Liouville's theorem, open mapping theorem, argument principle, Rouche's theorem, maximum modulus principle, Schwarz's lemma, normal families, Riemann mapping theorem.

Learning Outcomes

  • Students successfully completing this course should:
  • understand a range of basic concepts in real and complex analysis;
  • have developed a high level of competence at some core analytic skills;
  • be able to confidently apply analytic concepts in practical settings;
  • be able to present clear and logical mathematical arguments.
    • University Graduate Attributes

      This course will provide students with an opportunity to develop the Graduate Attributes specified below:

      Critically competent in a core academic discipline of their award

      Students know and can critically evaluate and, where applicable, apply this knowledge to topics/issues within their majoring subject.

Prerequisites

Subject to approval of the Head of School.

Timetable 2025

Students must attend one activity from each section.

Lecture A
Activity Day Time Location Weeks
01 Wednesday 11:00 - 12:00 Beatrice Tinsley 112
14 Jul - 24 Aug
8 Sep - 5 Oct
Lecture B
Activity Day Time Location Weeks
01 Thursday 11:00 - 12:00 Jack Erskine 101
14 Jul - 24 Aug
8 Sep - 5 Oct
Tutorial A
Activity Day Time Location Weeks
01 Friday 11:00 - 12:00 E14 Lecture Theatre
14 Jul - 24 Aug
8 Sep - 5 Oct

Course Coordinator

Ngin-Tee Koh

Indicative Fees

Domestic fee $1,138.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see Mathematics and Statistics .

All MATH425 Occurrences

  • MATH425-25S1 (C) Semester One 2025 - Not Offered
  • MATH425-25S2 (C) Semester Two 2025