ASTR112-16S1 (C) Semester One 2016

Astrophysics

15 points

Details:
Start Date: Monday, 22 February 2016
End Date: Sunday, 26 June 2016
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 6 March 2016
  • Without academic penalty (including no fee refund): Sunday, 22 May 2016

Description

A general descriptive introduction to modern astrophysics: the Sun and stars, the Galaxy, extragalactic systems and cosmology.

A cutting edge introduction to modern astrophysics for those potentially interested in further study. We start by explaining how stars shine, and follow their evolution from birth to violent death. We explore strange new worlds around other stars and then move out into the cosmos, viewing our own Galaxy across the electromagnetic spectrum and revealing the evidence for Dark Matter and supermassive black holes. We then use our telescopes as time machines to look out and back in the Universe, studying other galaxy systems and the origin and fate of the Universe as a whole. This course requires some mathematical skills, please contact the course organiser for details.

The topics covered in this course are:

SUN AND STARS
How can we study the stars? – characteristics of electromagnetic radiation and matter. The Sun and how it shines. How do we measure distances to stars?; Hertzsprung-Russell diagram; internal stellar structure; stellar evolution; protostar to stellar death – white dwarfs, planetary nebulae, supernovae, neutron stars and black holes.

PLANETS and EXOPLANETS
How do we think planets form, and how do we explain the origin of our own solar system? Ways of finding planets around other stars and the search for life on other worlds

THE MILKY WAY
How do we observe the Galaxy, effects of cosmic dust, the interstellar medium. Galactic rotation and evidence for Dark Matter. Spiral structure. The centre of the Galaxy and supermassive black hole.

GALAXIES AND COSMOLOGY
Galaxies beyond the Milky Way; Hubble’s law and expansion of the Universe; Large-scale structure of the Universe; Active galaxies and quasars; Cosmology – Big Bang & beyond; Dark Energy.

Learning Outcomes

  • The goals of this course are to:
    a) provide foundation knowledge of Astrophysics for students advancing in an astronomy or physics BSc or BSc(Hons) degree.
    b) illustrate key concepts in physics using the medium of astronomy where the Universe becomes our laboratory for studying physics at the largest scales and the extremes of density and temperature.
    Students will obtain basic competency in analysing and solving astrophysical problems. They will also obtain basic astrophysics data analysis skills using software designed to simulate astronomical observations.

    Students will have developed and be able to demonstrate :
  • basic scientific competency to solve mathematical problems in basic astrophysics.
  • basic astrophysics data analysis skills
  • written communication skills.

Course Coordinator

For further information see School of Physical & Chemical Sciences Head of Department

Assessment

Assessment Due Date Percentage  Description
Final Exam 55% 3 hour exam
Homework 15% 5 homework sheets, 4 of which will be assessed
Computing Labs 15% 5 Assignments, 4 of which will be assessed.
Mid-semester Test 15% Thursday 7th April, 6:00 to 7:00pm

Textbooks / Resources

Numerous other astronomy texts suitable for supplementary reading are available in the Engineering and Sciences Library.

Notes

100-level physics and astronomy course information http://www.phys.canterbury.ac.nz/courses/100level.shtml

Additional Course Outline Information

Academic integrity

http://www.phys.canterbury.ac.nz/courses/General.pdf

Indicative Fees

Domestic fee $832.00

International fee $3,638.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see School of Physical & Chemical Sciences .

All ASTR112 Occurrences

  • ASTR112-16S1 (C) Semester One 2016