ENCE361-22S1 (C) Semester One 2022

Embedded Systems 1

15 points

Details:
Start Date: Monday, 21 February 2022
End Date: Sunday, 26 June 2022
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 6 March 2022
  • Without academic penalty (including no fee refund): Sunday, 15 May 2022

Description

Embedded Systems is the study of specialised computer hardware, such as microcontrollers, programmed to perform a series of tasks, typically using a high-level language such as C, and targeted towards dedicated applications.

Topics covered include:
• Introduction and study of an advanced RISC-based microcontroller
• Microcontroller peripherals, such as PWM, serial, and ADC/DAC modules.
• Implement memory structures, such as double and circular buffers, for use in project work.
• What is a hardware/software interface? How can we use application programming interface (API) libraries to build an embedded system project?
• Extend hardware abstraction methods introduced in ENCE260.
• Design real-time kernels, as used in multitasking operating systems, and evaluating the performance of several kernels using context diagrams and CPU load analysis.
• The rate monotonic scheduling (RMS) algorithm is introduced.
• Apply knowledge of computer architecture to select hardware components and complex devices, such as microprocessors, for specific applications.

Learning Outcomes

At the end of this course, the student will be able to:
1. Build on a first course in microcontrollers to design, test, and debug an embedded system to conform to a project specification.
2. Enhance design skills by utilising internal microprocessor peripherals, such as timers, serial interfaces, and analogue-to-digital converters to build an embedded system.
3. Learn to implement algorithms in the C programming language.
4. Understand what is meant by the hardware and software interface and the constraints of a real-time embedded application.
5. Write well-structured code for the development of software modules to run on an advanced microcontroller.
6. Learn how to use a commercial high-level debugger to locate and correct programming errors.
7. Learn the basics of scheduling theory and develop a simple task scheduler for a real-time application.
8. Understand event-driven programming using interrupts and background task management.

University Graduate Attributes

This course will provide students with an opportunity to develop the Graduate Attributes specified below:

Critically competent in a core academic discipline of their award

Students know and can critically evaluate and, where applicable, apply this knowledge to topics/issues within their majoring subject.

Prerequisites

Restrictions

ENEL353, ENEL323, COSC361, ELEC361, ENEL340

Course Coordinator

Le Yang

Lecturer

Ciaran Moore

Assessment

Assessment Due Date Percentage 
Pre-Assessment Questionnaire 2%
Project Milestone 1 5%
Test 20%
Project Milestone 2 10%
Code Submission 5%
Project Report 15%
Post-Project Questionnaire 3%
Final Exam 40%

Textbooks / Resources

Recommended Reading

ARM; ARM, "Cortex-M4 Devices Generic User Guide" ; (http://infocentre.arm.com/help/topic/com.arm.doc.dui0553b/DUI0553.pdf).

Labrosse, Jean J; ?C/OS-III : the real-time kernel ; MicriSoBm Press, 2010.

Simon, David E; An embedded software primer ; Addison Wesley, 1999.

White, Elecia; Making embedded systems : design patterns for great software ; O'Reilly Media, 2012.

Yiu, Joseph; The definitive guide to ARM® Cortex®-M3 and Cortex-M4 processors ; Third edition; Elsevier, Newnes, 2014.

Indicative Fees

Domestic fee $1,002.00

International fee $5,625.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see Electrical and Computer Engineering .

All ENCE361 Occurrences

  • ENCE361-22S1 (C) Semester One 2022