ENCI438-25S1 (C) Semester One 2025

Introduction to Structural Earthquake Engineering

15 points

Details:
Start Date: Monday, 17 February 2025
End Date: Sunday, 22 June 2025
Withdrawal Dates
Last Day to withdraw from this course:
  • Without financial penalty (full fee refund): Sunday, 2 March 2025
  • Without academic penalty (including no fee refund): Sunday, 11 May 2025

Description

This course introduces analytical methods and design concepts in structural earthquake engineering. The course covers fundamentals of seismic hazard and seismic demands on typical structures and components, as well as key concepts and techniques used to analyse, design, and understand the behaviour of structures under earthquake loads.

Prerequisites

Restrictions

ENCI429

Assessment

Assessment Due Date Percentage 
Assignments 20%
final exam 40%
Test 40%

Textbooks / Resources

Recommended Reading

Moehle, Jack P; Seismic design of reinforced concrete buildings ; McGraw-Hill Education, 2015.

New Zealand Concrete Society; Cement & Concrete Association of New Zealand; Examples of concrete structural design to New Zealand Standard 3101 ; Cement & Concrete Association of New Zealand, 1998.

Priestley, M. J. N. , Calvi, G. M., Kowalsky, Mervyn J; Displacement-based seismic design of structures ; IUSS Press, 2007.

Pujol, Santiago , Irfanoglu, Ayhan, Puranam, Aishwarya; Drift-driven design of buildings : Mete Sozen's works on earthquake engineering ; First edition; CRC Press, 2022.

Additional Course Outline Information

Content

The course is delivered in six modules as shown below. The indicative number of lectures for each module is shown alongside the module heading.

Module 1: Seismic hazard (3 lectures)
• Earthquake demands and impacts: faulting, magnitude, ground motion parameters, impacts
• Response spectrum concept and potential applications
• Seismic hazard analysis concept and seismic hazard curves
• Elastic Design Spectrum
• Site effects, basin effects, and geotechnical considerations

Module 2: Seismic demand on structures (3 lectures)
• Performance objectives and seismic design philosophy
• Importance of basic dynamic characteristics (period damping)
• Importance of ductility on response spectrum demands
• R-mu-T concept and application
• Equivalent lateral force method for SDOF systems
• The equivalent lateral force method – to compute design actions for SDOF systems

Module 3: Simple seismic analysis and design of MDOF structures (12 lectures)
• Different types of lateral-load resisting systems – and intended inelastic behaviour
• Equivalent-lateral-force method for MDOF systems
• Distribution of design base-shear in multi-storey buildings
• Calculation of design force in lateral-load resisting components
• Capacity design
• Limitations of force-based design
• Relating local and global ductility and deformation demands.
• Introduction to displacement-based design
• Demands on parts and components
• The need for life-long learning in structural earthquake engineering

Module 4: Fundamentals of MDOF dynamic response (4 lectures)
• Equation of motion
• Modal (eigenvalue) analysis
• Modal response spectrum analysis
• Modal combination rules (SRSS and CQC)

Module 5: Nonlinear dynamic behaviour of MDOF systems (10 lectures)
• Development of plasticity in steel and RC sections
• Limit analysis (or “push-over” concept/assessment) of structural systems
• Checking analysis results with hand calculations
• Potential for NLTH analyses to assess non-linear dynamic behaviour of structures
• Re-examining importance of higher-mode effects in MDOF buildings (relevance for capacity design)
• Behaviour of buildings with vertical eccentricities.
• Behaviour of buildings with in-plan eccentricities.
• Impact of P-delta effects on the dynamic response of structures
• Impact of soil-structure interaction on response of buildings
• Uncertainties in non-linear dynamic behaviour (modelling issues, blind prediction results)

Module 6: Floor diaphragm analysis and design (4 lectures)
• Types of floor systems
• Force demands on diaphragms (inertia versus compatibility forces)
• Deformation demands on floor systems
• Strut and tie method

Course communication

Announcements about the course content and organisation will be made in class and on LEARN. Students can contact the course coordinator via email with general queries. If there are specific questions related to the homework assignments, students can contact the teaching assistants directly via email. If students have technical questions about the material being presented in class, please ask in or directly after class, or email the lecturer with query.

Indicative Fees

Domestic fee $1,197.00

International fee $6,000.00

* All fees are inclusive of NZ GST or any equivalent overseas tax, and do not include any programme level discount or additional course-related expenses.

For further information see Civil and Natural Resources Engineering .

All ENCI438 Occurrences

  • ENCI438-25S1 (C) Semester One 2025